Throughout our catalog, you will find terminology used for air moving selection and product sizing. Below are a few of the key terms:

Flow

- Volume Rate/Time
- ROTRON charts are in SCFM, m3/min, or L/S
- SCFM = Standard Cubic Feet Per Minute (American) where temperature = 68°F,

air density = 0.075 lb/cubic foot,

- and altitude = 0 feet above sea level
- M3/min = Cubic Meters Per Minute (Metric)
- L/sec = Liters Per Second (Metric)
- 1 m3/min = 35.3 SCFM
- 1 L/sec = 2.119 SCFM
- See Standard Engineering Conversions for other flows on pg I-2.

Pressure

- Force/Area
- ROTRON charts are in IWG, PSIG, MM of Water, IHG, or mbar
- IWG = Inches of Water Gauge (American)
- PSIG = Pounds Per Square Inch Gauge (American)
- MM of Water = Millimeter of Water Gauge (Metric)
- IHG = Inches of Mercury Gauge (American)
- mbar = Millibar Gauge (Metric)
- PSIA = Pounds Per Square Inch Absolute (American)
- 27.7 IWG = 1 PSIG
- 703.58 MM of Water = 1 PSIG
- 2.036 IHG = 1 PSIG
- 0.069 Bars = 69 mbar = 1 PSIG
- Standard Atmosphere = 0 PSIG = 14.7 PSIA
- See Basic Fan Laws Chart for correcting pressure due to speed or density changes on pgs. I-5 and I-6

Density

- Weight/Volume
- Standard Air = 0.075 lb/cubic foot
- See Density Chart for other gases on pg. I-4
- See Density Correction Chart due to altitude and temperature changes on pg. I-3

Specific Gravity

- Density Ratio Relative to Air
- Standard Air SG = 1.0
- Methane SG = 0.55
- See Specific Gravity Chart for other gases on pg. I-4

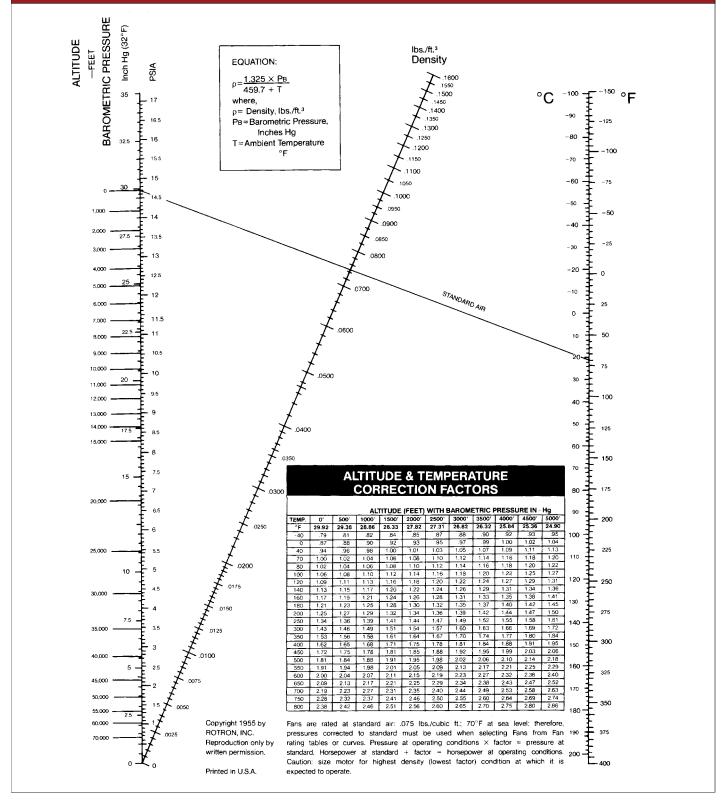
Velocity

- Distance/Time or Flow/Area
- FPM = Feet Per Minute (American)
- MPH = Miles Per Hour (American)
- M/min = Meters Per Minute (Metric)
- Km/h = Kilometers Per Hour (Metric)
- 88 FPM = 1 MPH
- 26.82 M/min = 1 MPH
- 1.609 Km/h = 1 MPH
- See Standard Engineering Conversion Chart for other velocities on pg. I-2
- See Orifice Flow Calculation Chart for air flow equations on pg. I-7

Pressure Drop / Back Pressure / Impedance

- Friction causes air to slow down and lost energy is measured in pressure drop terms
- Typical pressure drop areas include piping, elbows, accessories and system
- Each fixed system has a fixed system impedance caused by a single or multiple pressure drop points
- Changing the system impedance will cause blowers work point to change
- Changing the blower with fixed system impedance will change the working back pressure
- See Friction Loss Per Foot of Tubing and Fitting Charts on pg. I-8

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.


Standard Engineering Conversion

MULTIPLY	BY	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
tmospheres	76.0	Cms. of Mercury	KGS./Cubic Meter	0.06243	Pounds/Cubic Foot
Atmospheres	29.92	Inches of Mercury	Kilometers	3281	Feet
Atmospheres	33.90	Feet of Water	Kilowatts	56.92	British Thermal Units/Min.
Atmospheres	10,333	Kgs./Sq. Inch	Kilowatts	737.6	Foot-Pounds/Sec.
Atmospheres	1.013 x 10⁵	Pascals	Kilowatts	1.341	Horsepower
Atmospheres	14.70	Pounds/Sq. Inch	Kilowatts	14.34	KgCalories/Min.
Atmospheres	760	Torrs	Kilowatt-Hours	3415	British Thermal Units
Bars	0.9869	Atmospheres	Liters	10 ³	Cubic Centimeters
Bars	1. x 10 ⁶	Dynes/Sq. Cm.	Liters	61.02	Cubic Inches
Bars	1.020 x 10⁴	Kgs./Square Meter	Liters	10-3	Cubic Meters
Bars	14.50	Pounds/Sq. Inch	Log ₁₀ N	2.303	Log _∈ N or Ln N
British Thermal Units	0.2520	Kilogram-Calories	Log N or Ln N	0.4343	Log ₁₀ N
British Thermal Units	777.5	Foot-Pounds	Meters	100	Centimeters
British Thermal Units	3.927 x 10⁴	Horsepower-Hours	Meters	3.2808	Feet
British Thermal Units	1054	Joules	Meters		Inches
British Thermal Units	107.5	Kilogram-Meters		39.37	
British Thermal Units	2.928 x 10 ^{-₄}	Kilowatt-Hours	Meters	10 ⁻³	Kilometers
			Meters/Minute	1.667	Centimeters/Sec.
Centimeters of Mercury	0.01316	Atmospheres	Meters/Minute	3.281	Feet/Minute
Centimeters of Mercury	0.4461	Feet of Water	Meters/Minute	0.06	Kilometers/Hour
Centimeters of Mercury	136.0	Kgs./Square Meter	Meters/Minute	0.03728	Miles/Hour
Centimeters of Mercury	0.1934	Pounds/Sg. Inch	Miles	5280	Feet
			Miles	1.6093	Kilometers
Centimeters/Second	1.969	Feet/Minute			
Centimeters/Second	0.6	Meters/Minute	Miles	1760	Yards
Cubic Centimeters	3.531 x 10⁵	Cubic Feet	Miles/Hour	44.70	Centimeters/Sec.
Cubic Centimeters	6.102 x 10 ⁻²	Cubic Inches	Miles/Hour	88	Feet/Minute
Cubic Centimeters	10-6	Cubic Meters	Miles/Hour	1,467	Feet/Second
Cubic Centimeters	10-3	Liters	Miles/Hour	1.6093	Kilometers/Hour
Cubic Feet	2.832 x 10⁴	Cubic Cms.	Miles/Hour	26.82	Meters/Minute
Cubic Feet	1728	Cubic Inches	Mms. of Mercury	0.0394	Inches of Mercury
Cubic Feet	0.02832			1.3595-3	Kgs./Square Cm.
		Cubic Meters	Mms. of Mercury		
Cubic Feet	0.03704	Cubic Yards	Mms. of Mercury	0.01934	Pounds/Square Inch
Cibic Feet	7.481	Gallons	Pints (Liq.)	28.87	Cubic Inches
Cubic Feet	28.32	Liters	Pints (U.S. liquid)	473,179	Cubic Centimeters
Cu. Ft. of Water (60°F)	62.37	Pounds	Pints (U.S. liquid)	16	Ounces (U.S. fluid)
Cubic Feet/Minute	472.0	Cubic Cms./Sec.			
Cubic Feet/Minute	0.4720	Liters/Second	Pounds	444,823	Dynes
Cubic Feet/Minute	62.4	Lbs. of Water/Min.	Pounds	453.6	Grams
	16.39		Pounds	16	Ounces
Cubic Inches		Cubic Centimeters	Pounds of Carbon to CO ²	14,544	British Thermal Units (mean)
Cubic Inches	5.787 x 10⁴	Cubic Feet	Pounds of Water	27.68	Cubic Inches
Cubic Inches	1.639 x 10⁵	Cubic Meters	Pounds of Water	0.1198	Gallons
Cubic Inches	2.143 x 10⁵	Cubic Yards	Pounds of Water	000	Ganono
Cubic Meters	10 ⁶	Cubic Centimeters		970.3	British Thermal Units
Cubic Meters	35.31	Cubic Feet	Evaporated at 212°F		
Cubic Meters	61,023	Cubic Inches	Pounds/Cubic Foot	16.02	Kgs./Cubic Meter
	1.308	Cubic Yards	Pounds/Square Foot	4,882	Kgs./Square Meter
Cubic Meters			Pounds/Square Inch	0.06804	Atmospheres
Cubic Yards	7.646 x 10⁵	Cubic Centimeters	Pounds/Square Inch	27.7	Inches of Water
Cubic Yards	27	Cubic Feet	Pounds/Square Inch	2.036	Inches of Mercury
Cubic Yards	46,656	Cubic Inches	Pounds/Square Inch	703.1	Kgs./Square Meter
Cubic Yards	0.7646	Cubic Meters	Pounds/Square Inch	6.895 x 10 ³	Pascals
Feet	30.48	Centimeters	Pounds/Square Inch	51.715	Millimeters of Mercury at 0°C
Feet	12	Inches			-
			Square Centimeters	1.973 x 10⁵	Circular Mils
eet	0.3048	Meters	Square Centimeters	1.076 x 10 ^{-₃}	Square Feet
eet	1/3	Yards	Square Centimeters	0.1550	Square Inches
Feet of Air			Square Feet	929.0	Square Centimeters
(1 atmosphere 60°F)	5.30 x 10⁴	Pounds/Square Inch	Square Feet	0.09290	Square Meters
eet/Minute	0.5080	Centimeters/Sec.	Square Inches	1.273 x 10 ⁶	Circular Mils
Feet/Minute	0.01667	Feet/Second			
Feet/Minute	0.01829	Kilometers/Hour	Square Inches	6.452	Square Centimeters
Feet/Minute	0.3048	Meters/Minute	Square Inches	6.944 x 10 ⁻³	Square Feet
			Square Inches	10 ⁶	Square Mils
Feet/Minute	0.01136	Miles/Hour	Square Inches	645.2	Square Millimeters
Grams/Cu. Cm.	62.43	Pounds/Cubic Foot	Square Kilometers	10.76 x 10⁵	Square Feet
Horsepower	42.44	British Thermal Units/Min.	Square Kilometers	10 ⁶	Square Meters
Horsepower	33,000	Foot-Pounds/Min.	Square Kilometers	1.196 x 10⁰	Square Yards
			Square Meters	10.764	Square Feet
Horsepower	10.70	KgCalories/Min.	Square Meters	1.196	Square Yards
Horsepower	745.7	Watts			
Horsepower-Hours	2547	British Thermal Units	Temp. (Degs. C.) + 273	1	Abs. Temp. (Degs. C.)
nches	2.540	Centimeters	Temp. (Degs. C.) + 17.8	1.8	Temp. (Degs. Fahr.)
nches	10 ³	Mils	Temp. (Degs. F.) + 460	1	Abs. Temp. (Degs. F.)
			Temp. (Degs. F.) -32	5/9	Temp. (Degs. Cent.)
nches of Mercury	0.03342	Atmospheres			
nches of Mercury	13.60	Inches of Water	Watts	0.05692	British Thermal Units/Min.
nches of Mercury	345.3	Kgs./Square Meter	Watts	10 ⁷	Ergs/Second
nches of Mercury	25.40	Mms. of Mercury	Watts	44.26	Foot-Pounds/Min.
nches of Mercury	0.4912	Pounds/Square In.	Watts	1.341 x 10 ⁻³	Horsepower
nches of Water	0.002458	Atmospheres	Watts	0.01434	KgCalories/Min.
nches of Water	0.07355	Inches of Mercury	Watts	10-3	Kilowatts
nches of Water	25.40	Kgs./Square Meter	Watts-Hour	3.415	British Thermal Units
				1.341 x 10-	Haraanawar/Haura
Inches of Water Inches of Water	5.204 0.03613	Pounds/Square Ft. Pounds/Square In.	Watts-Hour Watts-Hour	1.341 x 10- 10 ⁻³	Horsepower/Hours Kilowatt-Hours

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

Density Correction Chart

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rechnical & Industrial Products Sales department.

Specific Gravity and Density of Various Gases at 60°F (1 ATM)

Gas or Vapor	Chemical Formula	Specific Gravity	Density (lbs./cu ft.)
Acetylene	C ₂ H ₂	0.899	.0686
Air	-	1.00	.0763
Ammonia	NH3	0.587	.0454
Argon	A	1.377	.1053
Benzene	C6H6	2.70	.205
Carbon Dioxide	CO ₂	1.539	.1166
Chlorine	Cl ₂	2.448	.0738
Ethane	C ₂ H ₆	1.038	.0799
Ethylene	C ₂ H ₄	0.969	.0739
Helium	He	0.138	.01054
Hydrogen	H ₂	0.0695	.00531
Hydrogen Sulfide	H ₂ S	1.19	.0897
Methane	CH4	0.555	.0424
Methyl Chloride	CH₃CI	1.785	.1356
Nitrogen	N ₂	0.967	.0738
Oxygen	O2	1.105	.0843
Propane	C3H8	1.55	.1180
Sulfer Oxide	SO ₂	2.26	.1720
Water Vapor	H ₂ O	0.622	.0373
	1	1	1

Explosive Atmosphere Classification

North American	European	
Class I Group A Group B Group C Group D	Zone 1 Group II C Group II C Group II B Group II A	Acetylene Hydrogen or equivalent hazard Ethyle ether vapors, ethylene or cyclopropane Gasoline, hexane, naptha, benzene, butane, alcohol, acetone, benzol, lacquer vapors or natural gas
Class II Group E Group F Group G	 	Metal dust Carbon black, coal or coke dust Flour, starch or grain

- General Purpose - Indoor

Resistant – Outdoor

Proof - Outdoor

Resistant - Outdoor

Dusttight, Raintight and Sleet (Ice)

- Rainproof and Sleet (Ice) Resistant

Dusttight, Raintight and Sleet (Ice)

- Watertight and Dusttight - Indoor

Watertight, Dusttight and Corrosion

Superseded by Type 12 for Control

- Dripproof - Indoor

- Outdoor

Apparatus

*In the center column, find the temperature to be converted. The equivalent temperature is in the left column, if converting

Temperature Conversion Chart

to Celsius, and in the right column, if converting to Fahrenheit. °F Temp °F °F °C Temp °F Temp °C Temp °C °C -78.9 -110 -166 1.7 35 95.0 27.2 177.8 182 360 680 81 148 27.8 188 370 -73.3 -100 96.8 179.6 698 2.2 36 82 -67.8 130 2.8 37 98.6 28.3 83 181.4 193 380 -90 716 -80 100.4 -62.2 -112 3.3 38 28.9 84 183.2 199 390 734 -56.7 -70 -94 3.9 39 102.2 29.4 85 185.0 204 400 752 -51.1 -45.6 -60 -50 -76 -58 40 41 104.0 105.8 210 216 4.4 30.0 86 87 186.8 410 770 30.6 5.0 420 188.6 788 31.1 -40.0 -40 -40 42 107.6 88 221 430 806 5.6 190.4 43 44 -34.4 -30 -22 6.1 109.4 31.7 89 192.2 227 440 824 -28.9 -20 -4 6.7 111.2 32.2 90 194.0 232 450 842 -23.3 -17.8 -10 0 14 32 7.2 7.8 45 46 113.0 32.8 91 92 195.8 238 243 460 470 860 197.6 114.8 33.3 878 47 48 -17.2 1 33.8 8.3 116.6 33.9 93 199.4 249 480 896 -16.7 2 35.6 89 1184 344 94 201.2 254 490 914 -16.1 3 37.4 49 35.0 95 9.4 120.2 203.0 260 500 932 39.2 41.0 50 51 52 96 97 204.8 206.6 266 271 510 520 -15.6 4 5 10.0 122.0 35.6 950 968 -15.0 10.6 123.8 36.1 -14.4 42.8 11.1 125.6 36.7 98 208.4 277 530 986 6 7 8 53 54 -13.9 44.6 11.7 127.4 37.2 99 210.2 282 540 1004 46.4 129.2 37.8 100 12.2 212.0 288 550 1022 -13.3 -12.8 9 48.2 12.8 55 56 57 58 59 131.0 43 110 230 293 560 1040 10 11 12 13 50.0 49 120 1058 -12.2 13.3 132.8 248 299 570 54 60 -11.7 51.8 13.9 134.6 130 266 304 580 1076 140 150 -11.1 53.6 55.4 14.4 136.4 284 310 316 590 1094 138.2 66 302 -10.6 15.0 600 1112 57.2 59.0 60 61 160 170 320 338 321 327 -10.0 14 15 15.6 140.0 71 77 610 1130 141.8 620 -9.4 16.1 1148 16 17 18 19 20 21 60.8 62 180 332 -8.9 16.7 143.6 82 356 630 1166 -8.3 -7.8 62.6 64.4 17.2 63 64 145.4 88 190 200 374 338 343 640 1184 17.8 147.2 93 392 650 1202 -7.2 66.2 18.3 65 149.0 99 210 410 349 660 1220 -6.7 100 212 68.0 18.9 66 150.8 413 354 670 1238 -6.1 69.8 19.4 67 152.6 104 220 428 360 680 1256 -5.6 -5.0 22 23 24 25 71.6 73.4 20.0 20.6 68 69 230 240 366 371 154.4 110 446 690 1274 464 156.2 700 1292 116 75.2 77.0 70 71 -4.4 21.1 158.0 121 250 482 377 710 1310 -3.9 500 21.7 159.8 127 260 382 720 1328 26 27 28 -3.3 78.8 22.2 72 270 518 388 730 161.6 132 1346 73 74 -2.8 80.6 22.8 163.4 138 280 536 393 740 1364 -2.2 -1.7 82.4 554 399 750 23.3 165.2 143 290 1382 29 84.2 23.9 75 167.0 149 300 572 404 760 1400 -11 30 31 86.0 244 76 77 168.8 154 310 590 410 770 1418 -0.6 87.8 25.0 170.6 160 320 608 416 780 1436 0 32 89.6 25.6 78 172.4 166 330 626 421 790 1454 427 1472 0.6 33 91.4 26.1 79 174.2 171 340 644 800 34 93.2 176.0 350 662 1490 1.1 26.7 80 177 432 810 °F = 9/5C + 32 ABSOLUTE RANKIN (R) R = °F + 460

NEMA Classifications

Type 1

Type 2

Type 3

3R

3S

4X

Type 4

Type 5

_

NEMA

Type 6	_	Submersible, Watertight, Dusttight and
		Sleet Resistant – Indoor and Outdoor
Type 7	-	Class I, Group A, B, C or D Hazardous
		Locations; Air Break Equipment – Indoor
Type 8	_	Class I, Group A, B, C or D Hazardous
		Locations; Oil-immersed Equipment – Indoor
Type 9	_	Class II, Group E, F or G Hazardous
		Locations; Air-break Equipment – Indoor
Type 10	_	Bureau of Mines
Type 11	_	Corrosion Resistant and Dripproof;
		Oil-immersed – Indoor
Type 12	_	Industrial Use, Dusttight and Driptight
		– Indoor
Type 13	_	Oiltight and Dusttight – Indoor

ABSOLUTE KELVIN (K) K = °C + 273

Ref: NEMA Standards Publication, Pub. No. 1CS-1970

_

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rechnical & Industrial Products Sales department.

°C = 5/9 (F - 32)

Physical Laws for Blower Applications

In the following formulae these symbols are used:

P – Pressure in pounds per square inch (PSI) or inches of mercury column (inches Hg)

CFM – Volume in cubic feet per minute

RPM – Speed in revolutions per minute

- D Density in pounds per cubic foot (lbs./cu. ft.)
- H Height of air or gas column (ft.)
- SG Specific Gravity (ratio of density of gas to the density of air)

"Standard Air" – Air at 68°F (absolute temperature 528°) and 29.92" Hg. (barometric pressure at sea level). The density of such air is 0.075 lbs./cu. ft. and the specific volume is 13.29 cu. ft./lb. The specific gravity is 1.0.

The outlet pressure of a blower depends on the condition of the air or gas at the inlet. The inlet condition is influenced by: a – Specific gravity (The ratio of density of the gas to density of

- standard air)
- b Altitude (location of blower)
- c Temperature of inlet air

Basic Fan Laws Chart

VARIABLE	VOLUME	PRESSURE	HORSEPOWER
WHEN SPEED CHANGES	Varies DIRECT with Speed Ratio	Varies with SQUARE of Speed Ratio	Varies with CUBE of Speed Ratio
	$CFM_2 = CFM_1 \left(\frac{RPM_2}{RPM_1} \right)$	$P_2 = P_1 \left(\frac{RPM_2}{RPM_1}\right)^2$	$HP_{2} = HP_{1} \left(\frac{RPM_{2}}{RPM_{1}} \right)^{3}$
WHEN DENSITY CHANGES	Does Not Change	Varies DIRECT with Density Ratio	Varies DIRECT with Density Ratio
		$P_2 = P_1 \left(\frac{D_2}{D_1}\right)$	$HP_2 = HP_1 \left(\frac{D_2}{D_1}\right)$

Volume

The Volume changes in direct ratio to the speed.

Example – A blower is operating at 3500 RPM and delivering 1000 cfm. If the speed is reduced to 3000 RPM, what is the new volume?

- V_1 = Original Volume (1000 CFM)
- V₂ = New Volume

RPM 1 = Original Speed (3500 RPM)

RPM 2 = New Speed (3000 RPM)

$$V_2 = V_1 \left(\frac{\text{RPM}_2}{\text{RPM}_1}\right)^1 = 1000 \text{ x} \left(\frac{3000}{3500}\right)^1 = 1000 \text{ x}.857 = 857 \text{ CFM}$$

Pressure

Pressure (barometric) varies in direct proportion to altitude.

Example – A blower is to operate at an elevation of 6000 feet and is to deliver 3 PSI pressure. What pressure (standard air) blower is required?

Pressure = 3 x
$$\frac{29.92}{23.98}$$
 = 3.75 or 3 3/4 lb.

If it is desired to determine what pressure a 3 lb. (standard air) blower will deliver at 6000 feet –

Pressure = 3 x
$$\frac{23.98}{29.92}$$
 = 2.4 or about 2 1/2 lb.

When a blower is to operate at a high altitude it is frequently specified that the blower be capable of handling a given volume of "standard air". It is then necessary to determine the equivalent volume of air at the higher altitude.

Example – A blower is to operate 6000 feet altitude and is to handle 1000 CFM of standard air. What is the CFM of air the blower must handle at 6000 feet altitude?

- Let: V_{\perp} = Volume of standard air (1000 CFM)
 - $V_2 = Volume of thinner air$
 - $Hg_1 = Barometric pressure sea level (29.92)$
 - $Hg_2 = Barometric pressure 6000' (23.98)$

$$V_2 = V_1 \times \frac{Hg_1}{Hg_2} = 1000 \times \frac{29.92}{23.98} = 1248 \text{ CFM}$$

The pressure changes as the square of the speed ratio.

Example – A blower is operating at a speed of 3500 RPM and delivering air at 5.0 pounds pressure. If the speed is reduced to 3000 RPM, what is the new pressure?

P₁ = Original Pressure (5 lbs.) P₂ = New Pressure RPM 1 = Original Speed (3500 RPM) RPM 2 = New Speed (3000 RPM)

$$P_2 = P_1 \left(\frac{RPM_2}{RPM_1}\right)^2 = 5 \times \left(\frac{3000}{3500}\right)^2 = 5 \times .735 = 3.68$$
 pounds

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rechnical & Industrial Products Sales department.

Pressure (Cont'd)

The Air Density varies in inverse proportion to the absolute temperature.

Example – A blower is to handle 200°F air at 3 PSI pressure. What pressure (standard air) blower is required?

Let: P_1 = Pressure hot air (3 PSI)

- $P_2 = Pressure standard air$
 - $AT_1 = Absolute temperature hot air (200+460=660°F)$
- $AT_2 = Absolute temperature standard air (68+460=528°F)$

$$P_2 = P_1 x \frac{AT_1}{AT_2} = 3 x \frac{660}{528} = 3.75 \text{ or } 3 3/4 \text{ lb}$$

A blower is capable of delivering 3 PSI pressure with standard air. What pressure will it develop handling 200°F inlet air?

$$P_1 = P_2 x \frac{AT_2}{AT_1} = 3 x \frac{528}{660} = 2.4 \text{ or about } 2 \frac{1}{2} \text{ lb.}$$

Pressure varies in direct proportion to the density.

Example - A 3 lb. (standard air) blower is to be used to handle gas having a specific gravity of 0.5. What pressure does the blower create when handling the gas?

Let: Pa = Air pressure (3 lb.) Pg = Gas pressure SG = Specific gravity of gas (0.5)

 $Pg = Pa \times SG = 3 \times .5 = 1.5$ lb.

If we are required to handle a gas having a specific gravity of 0.5 at 1.5 lb. pressure, we can determine the standard air pressure blower as follows:

Let: Pa =
$$\frac{Pg}{SG} = \frac{1.5}{.5} = 3$$
 lb.

The following table gives the barometric pressure of various altitudes: Absolute Pressure At Altitudes Above Sea Level (Based on U.S. Standard Atmosphere)

Altitude	Pressure		Altitude Pressure		Altitude	Pressure		
Feet	In. Hg.	PSIA	Feet	In. Hg.	PSIA	Feet	In. Hg.	PSIA
0	29.92	14.70	2,500	27.31	13.41	7,000	23.09	11.34
500	29.38	14.43	3,000	26.81	13.19	7,500	22.65	11.12
600	29.28	14.38	3,500	26.32	12.92	8,000	22.22	10.90
700	29.18	14.33	4,000	25.84	12.70	8,500	21.80	10.70
800	29.07	14.28	4,500	25.36	12.45	9,000	21.38	10.50
900	28.97	14.23	5,000	24.89	12.23	9,500	20.98	10.90
1,000	28.86	14.18	5,500	24.43	12.00	10,000	20.58	10.10
1,500	28.33	13.90	6,000	23.98	11.77			
2,000	27.82	13.67	6,500	23.53	11.56			

Horsepower

The horsepower changes as the *cube* of the speed ratio.

Example – A blower is operating at a speed of 3500 RPM and requiring 50 horsepower. If the speed is reduced to 3000 RPM, what is the new required horsepower?

HP 1 = Original Horsepower (50)

HP ² = New Horsepower

RPM 1 = Original Speed (3500 RPM)

RPM 2 = New Speed (3000 RPM)

$$HP_{2} = HP_{1} \times \left(\frac{RPM_{2}}{RPM_{1}}\right)^{3} = 50 \times \left(\frac{3000}{3500}\right)^{3} = 50 \times .630 = 31.5 \text{ horsepower}$$

The above is known as the 1-2-3 rule of blowers.

Horsepower vs. Specific Gravity & Ratio of density.

The horsepower varies in direct proportion to the specific gravity (ratio of density of gas to density of air).

Example – A standard air blower requires a 10 HP motor. What horsepower is required when this blower is to handle a gas whose specific gravity is 0.5?

 $HP = 10 \times 0.5 = 5$ horsepower

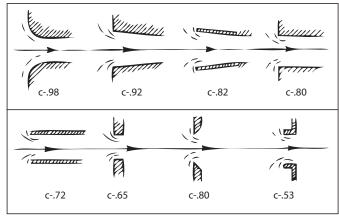
It is possible that several of the above modifications may be required on one installation. Therefore, it may be necessary to use various combinations of these formulae.

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

Orifice Flow

Orifice Flow Calculation

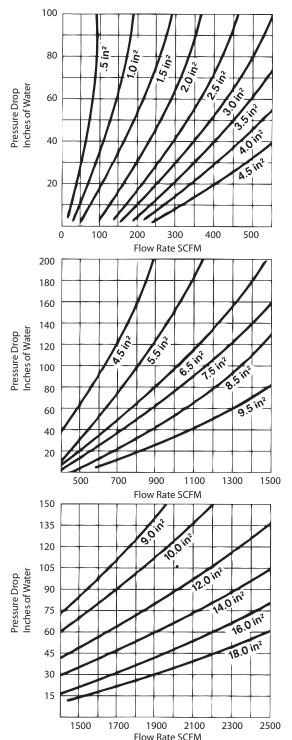
$$V = CK \sqrt{P} \quad Q = AV \quad VP = \left(\frac{V}{V}\right)$$


Where:

- V = V elocity in feet per minute (fpm)
- C = Orifice Coefficient
- K = Constant = 14,786 when P is expressed in In. Hg 21,094 when P is expressed in PSIG 4,005 when P is expressed in In. of Water
 (Above constants are based on an air density of 0.075 lbs/ft ³)

2

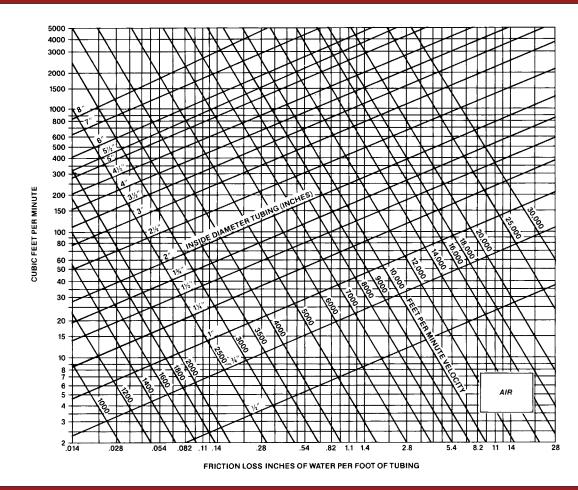
- P = Pressure differential across the orifice
- Q = Flow rate in cubic feet per minute (CFM)
- A = Total orifice area expressed in square feet
- VP = Velocity pressure (units are those of pressure)


Coefficient C for Orifices Under Vacuum or Pressure Flow

Area of Orifices Orifice Diameter in Inches									
Diameter in Inches	Square Inches	Square Feet							
1/8	.01227	.000085							
3/16	.02761	.00019							
1/4	.04908	.00034							
3/8	.11044	.00076							
1/2	.19634	.00136							
5/8	.30679	.00213							
7/8	.60132	.00417							
1.0	.78539	.00545							

Orifice area (in sq. inches) = .25 X π X (orifice diameter in inches) $^{\scriptscriptstyle 2}$ Orifice area (in sq. feet) = Area in sq. inches \div 144

ORIFICE PRESSURE DROP AS A FUNCTION OF FLOW AND ORIFICE AREA (C=.65)



This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

17

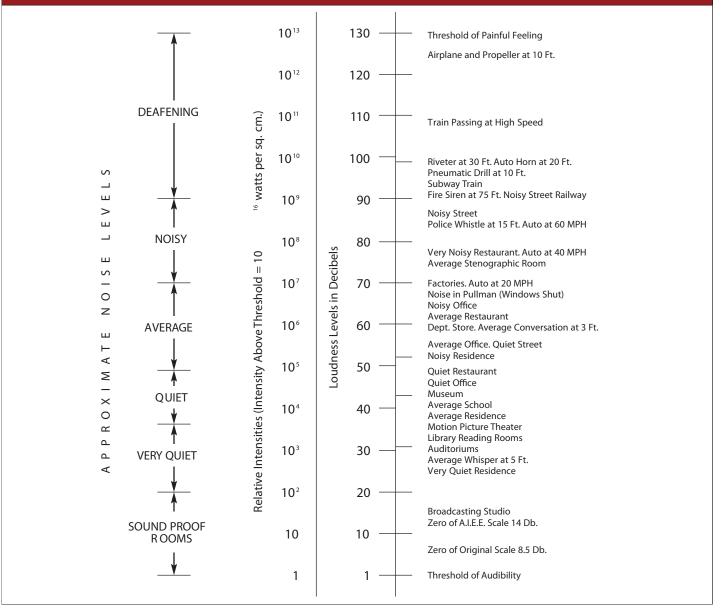
Friction Loss Per Foot of Tubing

Friction Loss in Fittings

To calculate friction loss in fittings use chart below. This chart will yield equivalent lengths (in feet) of tubing. Use this length with graph above to find friction loss in inches of water column.

NOMINAL PIPE SIZE (INCHES)	EQUIVALENT TUBING LENGTH (FEET)					
	90° EL	45° EL				
1 1/4	3	1.5				
1 1/2	4	2				
2	5	2.5				
2 1/2	б	3				
3	7	4				
4	10	5				
5	12	6				
б	15	7.5				
8	20	10				

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.


ROTRON®

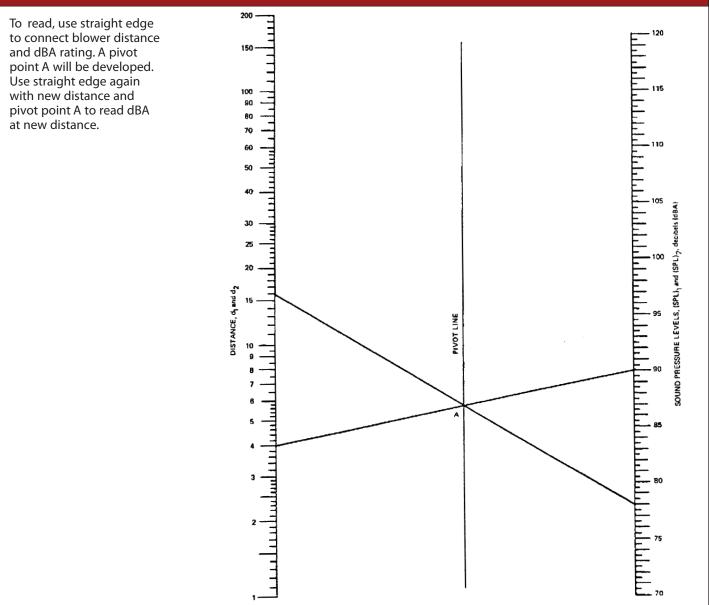
Noise Facts

- OSHA (Occupational Safety & Health Administration) regulates and monitors in-plant noise.
- Allowable noise is a function of dBA level at certain distance over an exposure time.
- OSHA regulations state 90 dBA for an 8 hour work period using slow responic setting on meter.
- Adding a second noise producer of equal dBA will add 3 dBA to the first dBA reading.
- Sound pressure level (SPL) decreases with distance (d)
 - (SPL) $_2 = (SPL) _1 20LOG \left(\frac{d2}{d1}\right)$

Therefore, each doubling of distance results in 6 dBA reduction.

Loudness Levels of Familiar Noises (Approximate Average Including Ear Nework)

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK rechnical & Industrial Products Sales department.



Industrial Blower Noise Chart* in dBA

Model	Mode		Model N		Mode Model		Mode		Model	Mode		Model	Mode	
woder	Suction	Pressure	Model	Suction	Pressure	Model	Suction	Pressure	woder	Suction	Pressure	Model	Suction	Pressure
SE	60-62	60-62	101	65-67	66-68	513	80-81	80-81	757	83-85	84-86	S/P 9	90-91	90-91
MF	64-65	64-65	202	67-69	68-70	505	77-78	76-77	808	84-85	84-85	909	81-82	84-86
RDC	76-78	76-78	303	65-67	67-69	523	82-83	82-83	633	81-82	81-82	1233	84-85	84-85
SL2	69-72	69-72	353	72-73	73-74	555	80-81	80-81	S7	88-89	88-89	S/P 13	87-88	90-91
SL4	72-78	72-78	404	73-74	74-75	656	82-83	82-83	858	84-85	84-85	14	86-87	86-87
SL5	76-79	76-79	454	76-77	75-76	6	85-86	85-86	833	82-84	82-84	S/P 15	91-92	91-92

* Average at 1 meter, 4 places around the blower

dBA at Distance Conversion Chart

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

